butterfly lemma - ορισμός. Τι είναι το butterfly lemma
DICLIB.COM
AI-based language tools
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:     

Μετάφραση και ανάλυση λέξεων από τεχνητή νοημοσύνη

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι butterfly lemma - ορισμός

TECHNICAL LEMMA IN GROUP THEORY
Butterfly lemma

Teichmüller–Tukey lemma         
THEOREM
Teichmueller-Tukey lemma; Tukey's lemma; Teichmüller-Tukey lemma; Teichmuller–Tukey lemma; Teichmuller-Tukey lemma; Tukey lemma
In mathematics, the Teichmüller–Tukey lemma (sometimes named just Tukey's lemma), named after John Tukey and Oswald Teichmüller, is a lemma that states that every nonempty collection of finite character has a maximal element with respect to inclusion. Over Zermelo–Fraenkel set theory, the Teichmüller–Tukey lemma is equivalent to the axiom of choice, and therefore to the well-ordering theorem, Zorn's lemma, and the Hausdorff maximal principle.
Nine lemma         
CATEGORY THEORY LEMMA ABOUT COMMUTATIVE DIAGRAMS
9-lemma
[mathematics], the nine lemma (or 3×3 lemma) is a statement about [[commutative diagrams and exact sequences valid in the category of groups and any abelian category. It states: if the diagram to the right is a commutative diagram and all columns as well as the two bottom rows are exact, then the top row is exact as well.
Zorn's lemma         
  • year=2003}}</ref> Zorn's lemma is not needed for finite graphs, such as the one pictured here.
STATEMENT EQUIVALENT TO THE AXIOM OF CHOICE, ABOUT THE EXISTENCE OF A MAXIMAL ELEMENT IN A POSET WITH A MAXIMAL CHAIN CONDITION
Zorn Lemma; Kuratowski-Zorn lemma; Zorn's Lemma; Zorn lemma; Zorns lemma; Kuratowski–Zorn lemma
Zorn's lemma, also known as the Kuratowski–Zorn lemma, is a proposition of set theory. It states that a partially ordered set containing upper bounds for every chain (that is, every totally ordered subset) necessarily contains at least one maximal element.

Βικιπαίδεια

Zassenhaus lemma

In mathematics, the butterfly lemma or Zassenhaus lemma, named after Hans Zassenhaus, is a technical result on the lattice of subgroups of a group or the lattice of submodules of a module, or more generally for any modular lattice.

Lemma. Suppose G {\displaystyle G} is a group with subgroups A {\displaystyle A} and C {\displaystyle C} . Suppose B A {\displaystyle B\triangleleft A} and D C {\displaystyle D\triangleleft C} are normal subgroups. Then there is an isomorphism of quotient groups:
( A C ) B ( A D ) B ( A C ) D ( B C ) D . {\displaystyle {\frac {(A\cap C)B}{(A\cap D)B}}\cong {\frac {(A\cap C)D}{(B\cap C)D}}.}

This can be generalized to the case of a group with operators ( G , Ω ) {\displaystyle (G,\Omega )} with stable subgroups A {\displaystyle A} and C {\displaystyle C} , the above statement being the case of Ω = G {\displaystyle \Omega =G} acting on itself by conjugation.

Zassenhaus proved this lemma specifically to give the most direct proof of the Schreier refinement theorem. The 'butterfly' becomes apparent when trying to draw the Hasse diagram of the various groups involved.

Zassenhaus' lemma for groups can be derived from a more general result known as Goursat's theorem stated in a Goursat variety (of which groups are an instance); however the group-specific modular law also needs to be used in the derivation.